
DBMS Functional Dependency: Transitive, Trivial, Multivalve

(Example)

What is a Functional Dependency?

Functional Dependency (FD) determines the relation of one attribute to another attribute in a

database management system (DBMS) system. Functional dependency helps you to maintain the

quality of data in the database. A functional dependency is denoted by an arrow →. The

functional dependency of X on Y is represented by X → Y. Functional Dependency plays a vital

role to find the difference between good and bad database design.

Example:

Employee number Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name, city,

salary, etc. By this, we can say that the city, Employee Name, and salary are functionally

depended on Employee number.

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

• Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value of

Y.

• Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds.

That is adding attributes which do not change the basic dependencies.

• Transitivity rule: This rule is very much similar to the transitive rule in algebra if x -> y

holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

Types of Functional Dependencies

✓ Multivalued dependency:

✓ Trivial functional dependency:

✓ Non-trivial functional dependency:

✓ Transitive dependency:

Multivalued dependency in DBMS

Multivalued dependency occurs in the situation where there are multiple independent

multivalued attributes in a single table. A multivalued dependency is a complete constraint

between two sets of attributes in a relation. It requires that certain tuples be present in a relation.

Example:

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

In this example, maf_year and color are independent of each other but dependent on car_model.

In this example, these two columns are said to be multivalue dependent on car_model.

This dependence can be represented like this:

car_model -> maf_year

car_model-> colour

Trivial Functional dependency:

The Trivial dependency is a set of attributes which are called a trivial if the set of attributes are

included in that attribute.

So, X -> Y is a trivial functional dependency if Y is a subset of X.

For example:

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Consider this table with two columns Emp_id and Emp_name.

{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a subset of

{Emp_id,Emp_name}.

Non trivial functional dependency in DBMS

Functional dependency which also known as a nontrivial dependency occurs when A->B holds

true where B is not a subset of A. In a relationship, if attribute B is not a subset of attribute A,

then it is considered as a non-trivial dependency.

Company
CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example:

(Company} -> {CEO} (if we know the Company, we knows the CEO name)

But CEO is not a subset of Company, and hence it's non-trivial functional dependency.

Transitive dependency:

A transitive is a type of functional dependency which happens when t is indirectly formed by two

functional dependencies.

Example:

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

{Company} -> {CEO} (if we know the compay, we know its CEO's name)

{CEO } -> {Age} If we know the CEO, we know the Age

Therefore according to the rule of rule of transitive dependency:

{ Company} -> {Age} should hold, that makes sense because if we know the company name, we can
know his age.

Note: You need to remember that transitive dependency can only occur in a relation of three or more
attributes.

What is Normalization?

• Normalization is a method of organizing the data in the database which helps you to

avoid data redundancy, insertion, update & deletion anomaly. It is a process of analyzing

the relation schemas based on their different functional dependencies and primary key.

• Normalization is inherent to relational database theory. It may have the effect of

duplicating the same data within the database which may result in the creation of

additional tables.

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not repeat at

multiple locations in that database

• It helps you to maintain the quality of data in the database

• It helps you to defined meanings and constraints of databases

• It helps you to identify bad designs

• It helps you to find the facts regarding the database design

Normalization in DBMS: 1NF, 2NF, 3NF and BCNF in Database

• Normalization is a process of organizing the data in database to avoid data redundancy,

insertion anomaly, update anomaly & deletion anomaly. Let’s discuss about anomalies

first then we will discuss normal forms with examples.

Anomalies in DBMS

• There are three types of anomalies that occur when the database is not normalized. These

are – Insertion, update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named

employee that has four attributes: emp_id for storing employee’s id, emp_name for storing

employee’s name, emp_address for storing employee’s address and emp_dept for storing the

department details in which the employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

The above table is not normalized. We will see the problems that we face when a table is not

normalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two

departments of the company. If we want to update the address of Rick then we have to update the

same in two rows or the data will become inconsistent. If somehow, the correct address gets

updated in one department but not in other then as per the database, Rick would be having two

different addresses, which is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and

currently not assigned to any department then we would not be able to insert the data into the

table if emp_dept field doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then

deleting the rows that are having emp_dept as D890 would also delete the information of

employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss

about normalization.

Normalization

Here are the most commonly used normal forms:

• First normal form(1NF)

• Second normal form(2NF)

• Third normal form(3NF)

• Boyce & Codd normal form (BCNF)

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values.

It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur
8812121212

9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore
9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

Table is in 1NF (First normal form)

No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They

create a table that looks like this: Since a teacher can teach more than one subjects, the table can

have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because

non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of

candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is

dependent on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF

• Transitive functional dependency of non-prime attribute on any super key should be

removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each

functional dependency X-> Y at least one of the following conditions hold:

• X is a super key of table

• Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create

a table named employee_details that looks like this:

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on

emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Boyce Codd normal form (BCNF)
It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than

3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X

should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department.

They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept_mapping table:

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

