
Dr. Chandrajit M MIT FGC, Mysore 1

DBMS_Unit 2

Relational model and Relational Algebra

 Relational Model Concepts

 Relational Constraints and Relational database Schemas

 Update Operations

 Transactions and Dealing with Constraint Violations

 Unary Relational Operations: Select and Project

 Relational Algebra Operations from Set Theory

 Binary Relational Operations: JOIN and DIVISION

 Aggregate Functions, Generalized Projections

 Examples of Queries in Relational Algebra

 Relational database Design Using ER-to-Relational Mapping

Relational Model Concepts

 The relational model is based on a collection of mathematical principles drawn primarily from

set theory and predicate logic.

 The model was first proposed by Dr. E.F. Codd of IBM in 1970 in the following paper:

"A Relational Model for Large Shared Data Banks," Communications of the ACM, June

1970.

 A relation is a table consisting of rows (tuples) and columns (attributes).

 Each row represents a fact that corresponds to a real-world entity or relationship.

Each row has a value of an item or set of items that uniquely identifies that row in the table.

 Sometimes row-ids or sequential numbers are assigned to identify the rows in the table.

 Name of table and columns are necessary to interpret the meaning of values.

 Each column typically is called by its column name or column header or attribute name.

 Domain:

 A set of atomic (indivisible) values for each attribute.

 A data type, format is specified for each column

 Thus a domain has a name, data type & format.

 Additional information for interpreting the values of a domain can also be given e.g.

dollar, kg etc.

e.g.

Phone_number: Set of all Phone Numbers in India having 10 digits

Employee age: All possible ages (20 – 70)

Dr. Chandrajit M MIT FGC, Mysore 2

Relational Schema: relation name and a list of attributes

e.g.

 R(A1, A2, A3, ……..An)

 R Relation

 A1, A2, A3, …An set of attributes in relation R

 dom(Ai): domain of attribute of Ai

 dom (A1): domain of attribute A1

 Degree (arity) of relation is number of attributes.

 Relation name: STUDENT

 List of attributes: USN, Name, Address, DOB, GPA

 Dom (name): All possible Names

 Degree of relation: 5

 Using data type of each attribute

STUDENT (USN: string, Name: string, Address: string, DOB: Date, GPA: real)

 r (R) denotes a relation r on the relation schema

 R (A1, A2, A3…..An)

 and is a set of n-tuples

 r= {t1, t2, t3, ….., tm}

 where t = {v1, v2, v3,….vn} vi = t [Ai]

 R: schema of the relation

 r of R: a specific "value" or population of R.

 R is also called the intension of a relation

 r is also called the extension of a relation .

 A relation r(R) is a mathematical relation of degree n on the domains dom(A1),

dom(A2),….,dom(An).

 It is a subset of the Cartesian product of the domains that define R

 r(R) (dom (A1) * dom (A2) * * dom(An))

 The Cartesian product specifies all possible combinations of the values from the

underlying domains.

 Total no of tuples in the Cartesian product is

Dr. Chandrajit M MIT FGC, Mysore 3

 |dom(A1)| * |dom(A2)| * …….* |dom(An)|

 where cardinality of the domain (finite) is |D|.

 r(R) is the current relation state i.e. valid tuples that represent a particular state of the real

world (or few tuples out of the combinations resulted from Cartesian product) .

 Relation schema is relatively much more stable.

 Relation state changes as the state of the real world changes.

Characteristics of Relations

 Each value is derived from an appropriate domain.

 A relation may be regarded as a set of tuples (rows).

 Columns in a table are also called attributes of the relation.

 Ordering of tuples in a relation

 The tuples are not considered to be ordered physically, even though they appear to be

in the tabular form.

 Many logically orders can be specified in a relation .

 Ordering of attributes in a relation schema R (and of values within each tuple):

 A tuple is an ordered list of n values

e.g. the attributes in R(A1, A2, ..., An) and the values in t=<v1, v2, ..., vn> are

ordered.

At the logical level order of attributes and their values is not important as long as

correspondence between attributes and values is maintained.

 Values and NULLs in the Tuples

 Each value is an atomic value, composite and multivalued attributes are not allowed

(due to first normal form).

 Multivalued attributes must be represented by separate relations.

 Composite attributes are represented by their simple component attributes in the basic

relational model.

 NULL represents the values of attributes because

 Value unknown

 Value exists but not available

 Attribute not applicable

Relational Model Notation

 A relation schema R of degree n: R(A1,A2,…..An)

 Tuple t in a relation: t = <V1, V2,…. Vn>

 Vi belongs to Ai

 Q, R, S Relation names

 q, r, s Relation states

 t, u, v tuples

 E.g. Student (USN, Name, Address) Relation schema

 Student (111, Meena, #508 RRNagar) one tuple from the current Relation state

 R.A Student.Name Student.Address

Example

Dr. Chandrajit M MIT FGC, Mysore 4

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

 Each row in the CUSTOMER table may be referred to as a tuple in the table and would

consist of four values.

 <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

is a tuple belonging to the CUSTOMER relation.

Relational Model constraints & Relational Database Schema

Relational Model constraints

Constraints are restrictions specified on a relational database and must hold on all valid

relation instances.

Constraints can be divided into three main categories:

1. Inherent model-based or implicit constraints

Constraints that are inherent in the data model

2. Schema based or explicit constraints

Constraints that are directly expressed in schema of the data model specifying in DDL

3. Application-based or semantic constraints or business rules

Constraints that can not be directly expressed in schema of the data model and hence must be

expressed and enforced by the application programs

 There are following main types of constraints which can be specified in DDL :

 Domain Constraint

 Key Constraint

 Entity Integrity

 Referential Integrity

Domain Constraint

 Within each tuple, the value of each attribute must be an atomic value from that

domain.

 Data type

 Integers, real

 Characters, fixed & variable length strings

 Date, time etc.

 Range of values can be specified for each attribute

Key Constraint

 A relation is a set of tuples and all elements of a set are distinct. Thus, all tuples in a relation

state must be distinct.

 Superkey is set of attributes that identifies the tuples uniquely in a valid relation state.

 Any such set of attributes is called a Superkey

 Default superkey is a set of all attributes

t1[SK] # t2[SK]

Dr. Chandrajit M MIT FGC, Mysore 5

 Minimal superkey is a superkey from which we can not remove any attributes and still have

uniqueness constraint.

 or

 A "minimal" superkey is a superkey K such that removal of any attribute from K results in a

set of attributes that is not a superkey.

 A minimal superkey is called a key attribute of the relation.

Key Constraint (Example)

Relation schema

 Student {USN, Name, Address}

 Default Superkey

 {USN, Name, Address}

Removing redundant attributes

 {USN, Name} Superkey

 {USN} Minimal Superkey (or key)

Relation schema

 Order_details {Order_no, item_no, Quantity }

 Default Superkey

 {Order_no, item_no, Quantity }

Removing redundant attributes

 {Order_no, item_no} Minimal Superkey (or key)

 Candidate keys are those key attributes which can uniquely identifies tuples separately.

 Candidate key must satisfy the following properties:

 Uniqueness property:

No two distinct tuples have the same value for the key.

 Minimality property:

None of the attributes of the key (in case of composite key) can be discarded from the

key without destroying the uniqueness property.

 Primary Key is the candidate key that is chosen to identify the tuples uniquely.

 Only one candidate key can be chosen as Primary key.

 It should be underlined.

 Value of primary key can not be null.

 It may be single attribute or a small set of attributes. (if more than one attribute can

identify the tuples uniquely together, those attributes together form composite

primary key)

Dr. Chandrajit M MIT FGC, Mysore 6

The car relation with two candidate keys: License number and engine serial number

NULL Constraint

 Some of the Attributes can be restricted not to allow NULL values.

 NOT NULL constraint can be declared.

Entity Integrity Constraints

 Entity Integrity:

 The primary key attributes PK of each relation schema R in S cannot have null values

in any tuple of r(R).

 This is because primary key values are used to identify the individual tuples.

 Key Constraints & Entity Integrity Constraints are specified on individual relations

 Other attributes of R may be similarly constrained to disallow null values, even though they

are not members of the primary key.

 Referential integrity constraint is specified between two relations and is used to maintain the

consistency among tuples in the two relations.

Foreign Key

 The foreign key is a column or a set of columns in one (referencing) table that refers to a

column or set of columns in another (referenced) table.

 Dno of Employee refers to Dnumber of Department

 An attribute in a relation R1 is a foreign key [FK] of R1 that references PK of relation R2

 The attribute in FK have the same domains as the primary key [PK] attribute of R2

 Foreign Key can refer to its own relation

 SuperSSN in Employee refers to SSN of Employee

 R1 referencing relation

 R2 referenced relation

Dr. Chandrajit M MIT FGC, Mysore 7

 t1[FK]=t2[PK]

 If t1 is from r1(R1)

 If t2 is from r2(R2)

 t1 of R1 refers to t2 of R2

 A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

 However null is possible in FK.

Semantic Integrity Constraints

 Semantic Integrity Constraints can be specified and enforced on a relation database.

 Salary of an employee should not exceed than 10,00,000

 The max. no. of hours per employee

for all projects he or she works on is 56 hrs

per week

 A general purpose constraint specification language (triggers and assertions) can be used.

Relational Algebra Operations

 Operations can be categorized into retrievals and updates. Further, it can be classified as

unary or binary operations. If operation is performed on one table it is unary and if operation

is performed on two tables it is binary.

 Update operations are:

 INSERT a tuple.

 DELETE a tuple.

 MODIFY a tuple.

 Retrieval operations are:

 Select .

 Project.

Update Operations on Relations

 Integrity constraints should not be violated during the update operations.

 Several update operations may have to be grouped together.

 Updates may propagate to cause other updates automatically. Thus, it may be necessary to

maintain integrity constraints.

Insert operation

 Insert can violate any of the four types of constraints:

 Domain constraints

 If an attribute value does not belong to appropriate domain

 Key constraints

 If value of primary key of new tuple already exists in another tuple of the

relation

 Entity constraints

 If value of primary key of new tuple is null

 Referential integrity constraints

 If value of foreign key refers to a tuple that does not exist.

Dr. Chandrajit M MIT FGC, Mysore 8

 DEPT

EMPLOYEE

 Domain constraints

 Insert into EMPLOYEE values(„e003‟, „Teena‟, „asfdf‟, „1‟);

 Not accepted

 Key constraints

 Insert into EMPLOYEE values(„e001‟, „Teena‟, 31000, „1‟);

 Not accepted

 Entity constraints

 Insert into EMPLOYEE values(„‟, „Teena‟, 31000, „1‟);

 Not accepted

 Referential integrity constraints

 Insert into EMPLOYEE values(„‟, „Teena‟, 31000, „3‟);

 Not accepted

 Insert into EMPLOYEE values(„e003‟, „Teena‟, 31000, „1‟);

 Accepted

Delete operation

 Delete can violate only Referential integrity constraints

 If the tuple being deleted is referenced by the foreign key from other relation‟s tuples

 delete from DEPT where dname = „MBA‟;

 Not accepted

 Due to delete operation violation, three options are possible:

1. Reject the deletion

2. Cascade deletion – delete tuples from different relations that refer the tuple that being deleted

3. Modify the referencing attribute values

 . Null

 . Some valid value

 If FK is part of PK, it can not be NULL

Cascade deletion

 delete from DEPT where dname = „MBA‟;

 Delete the tuples from DEPT and EMPLOYEE also wherever dname = „MBA‟ is

satisfied, (but not feasible)

DNUM DNAME

1 MCA

2 MBA

ENUM ENAME Salary DNO

E001 Seema 30000 1

E002 Reena 32000 2

Dr. Chandrajit M MIT FGC, Mysore 9

 or

 Delete the tuples from DEPT where dname = „MBA‟

and tuples from EMPLOYEE will be updated to NULL for DNO where dname =

„MBA‟ (feasible)

Update (modify) operation

 Generally, it is necessary to specify a condition on the attributes of the relation to select the

tuple to be modified

 Updating an attribute other than PK, FK –

 ----only domain constraint will be violated

 ----i.e. check to confirm that the new value is of the correct data type and domain

 Modifying a PK deleting one tuple + inserting a new tuple

 Constraint violations due to Delete

 Constraint violations due to Insert

 Modifying a FK new value should refer to an existing tuple in the referenced

relation

 Referential Integrity Violation

Select operation

 Select operation is used to select a subset of the tuples from a relation that satisfy a selection

condition.

 It is a horizontal partitioning of the relation:

 One partition satisfying the condition and will be shown as result.

 Other partition not satisfying the condition will be discarded.

SELECT operation is unary

 σ <selection condition> (R)

 Where σ (sigma) is for select operation

 selection condition is a boolean expression specified on the attributes of Relation

 Clauses of selection condition

 <Attribute name> <comparison operator> <constant value>

 <Attribute name> <comparison operator> <Attribute name>

Employee

σ salary>20,000 (Employee)

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

105 Pam 18,000

Dr. Chandrajit M MIT FGC, Mysore 10

Resultant table:

Employee

 Comparison operator

 =, <, >, ≠, ≥,≤ for numeric value or date

 =, ≠ for strings of characters

 Constant value

 Value from attribute domain

 Degree of resulting relation is same as that of R

 No. of tuples in resulting relation <= no. of tuples in R

 i.e. |σc (R)| <= |R|

 Selection condition may be more than one

 i.e. (cond1 and cond2) true if both are true

 i.e. (cond1 or cond2) true if any one or both are true

 NOT cond true if cond is false

 Select operation is Commutative:

 σ<cond1> (σ<cond2> (R)) = σ<cond2> (σ<cond1> (R))

 A sequence of Selects can be applied in any order.

 Cascade of Selects can be used through one select using Conjunctive (AND)

 σ<cond1> (σ<cond2> (….(σ<condn>(R))……))

 = σ<cond1> AND<cond2>AND…… AND<condn> (R)

Select operation:

Commutative

Employee

σ salary>20,000

(σ Dno=2 (Employee))

Empid Name Salary

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid Name Dno Salary

101 Ram 1 20,000

102 Shyam 2 22,000

103 Geeta 3 24,000

104 Geeta 2 25,000

105 Pam 2 18,000

Empid Name Dno Salary

Dr. Chandrajit M MIT FGC, Mysore 11

Resultant table:

Employee

Project Operation:

 Project operation selects certain column from relation and discards rest.

 It is a vertical partitioning of the relation:

 One partition satisfying the condition and will be shown as result.

 Other partition not satisfying the condition and will be discarded.

PROJECT operation is unary.

Employee

Π empid, salary (Employee)

Resultant table:

Employee

Employee

Π name, salary (Employee)

Resultant table:

102 Shyam 2 22,000

104 Geeta 2 25,000

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid Salary

101 20,000

102 22,000

103 24,000

104 25,000

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 25,000

104 Geeta 25,000

Dr. Chandrajit M MIT FGC, Mysore 12

Employee

 Π <attribute list> (R)

 Where Π (pi) is for project operation

 Attribute list is the desired list of attributes from relation R

 Resulting relation has attribute only those specified in list and in same order

 Degree of resulting relation is same as no. of attributes in list

 No. of tuples in resulting relation?

 If attribute list has Primary key, the no. of tuples will be same as in Relation R

 If attribute list does not have Primary key, the duplicate tuples will be removed to

give valid relation

 Thus, no. of tuples in resulting relation <= no. of tuples in relation R

 Project operation is not Commutative:

 Π<list1> (Π<list2> (R)) ≠ Π<list2> (Π<list1> (R))

 Π<list1> (Π<list2> (R)) = Π<list1> (R)

Project Operation: not Commutative

Employee

Π empid (Π empid, salary

(Employee))

Resultant table:

 Π salary (Π empid, salary(Employee))

Employee

 EMPLOYEE

Name Salary

Ram 20,000

Shyam 22,000

Geeta 25,000

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid

101

102

103

104

Salary

20,000

22,000

24,000

25,000

Dr. Chandrajit M MIT FGC, Mysore 13

Project Operation: not Commutative

Employee

Π empid (Π empid, salary

(Employee))

Resultant table:

 Π empid (Employee))

Employee

 EMPLOYEE

Sequence of operations Operation

 Several algebraic expressions:

 As a single relational expression by nesting operations

 Π<list1> (σ<cond1> (R))

 Or

 Name the intermediate relation and get final result as a series of operations

 temp σ<cond1> (R)

 result Π<list1> (temp)

Employee

Π empid (σ salary>20,000

(Employee))

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid

101

102

103

104

Empid

101

102

103

104

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid

Dr. Chandrajit M MIT FGC, Mysore 14

Resultant table:

Employee

Employee

Π empid (σ salary>20,000

(Employee))

temp

temp σ salary>20,000

(Employee)

empid (temp)

Employee

Rename

 Attributes can be renamed in resulting relation

 temp σ<cond1> (Employee)

 Emp(empid, empname, empsalary) Π<eid, ename, salary> (temp)

 If no renaming is applied, resulting relation will have same names and order of

attributes as parent relation has.

Sequence of operations Operation: Rename resulting relation

102

103

104

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid Name Salary

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

Empid

102

103

104

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

Dr. Chandrajit M MIT FGC, Mysore 15

Employee

Employee

temp σ salary>20,000

(Employee)

EMP(EID) Π empid (temp)

EMP

Set Theoretic Operation

 Binary operation

 Both relational should be union compatible

 Union compatible has following characteristics:

 i.e. for R(A1, A2, ….An) & S(B1,B2,….Bn)

 dom(Ai) = dom(Bi) for 1 <= i <=n

 Degree of both relations should be same.

 UNION (RUS)

 INTERSECTION (R ∩S)

 MINUS (R-S)

 UNION (RUS)

 It includes all tuples that are either in R or S or in both

 Duplicate tuples are eliminated.

104 Geeta 25,000

Empid Name Salary

101 Ram 20,000

102 Shyam 22,000

103 Geeta 24,000

104 Geeta 25,000

EID

102

103

104

Dr. Chandrajit M MIT FGC, Mysore 16

UNION

 Student U instructor

Student

Instructor

Id Name

102 Shyam

103 Geeta

107 Smith

 INTERSECTION (R∩S)

 It includes all tuples that are I n R & S both

Intersection

 Student ∩instructor

Student

Instructor

Id Name

102 Shyam

103 Geeta

107 Smith

Difference

 (R-S)

 It includes all tuples that are in R but not in S

 (S-R)

 It includes all tuples that are in S but not in R

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

107 Smith

Id Name

102 Shyam

103 Geeta

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

Dr. Chandrajit M MIT FGC, Mysore 17

(R-S) ≠ (S-R)

 DIFFERENCE (S-R)

 Student -instructor

Student

Instructor

Id Name

102 Shyam

103 Geeta

107 Smith

DIFFERENCE: not commutative

Student – Instructor Instructor - Student

 Id Name

 101 Ram

 104 Rita

 Union & Intersection are:

1. Commutative

 (R U S) = (S U R)

 (R ∩ S) = (S ∩ R)

2. Associative

 (R U (S U T) = (R U S) U T)

 (R ∩ (S ∩ T) = (R ∩ S) ∩ T)

Student UNION Instructor

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

Id Name

101 Ram

104 Rita
Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

 Id Name

 107 Smith

Id Name

102 Shyam

103 Geeta

107 Smith

Dr. Chandrajit M MIT FGC, Mysore 18

Student U Instructor Instructor U Student

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

107 Smith

 INTERSECTION

Student Instructor

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

Student ∩ Instructor Instructor ∩ Student

Student Player

Id Name

101 Ram

102 Shyam

103 Geeta

Id Name

101 Ram

102 Shyam

103 Geeta

104 Rita

107 Smith

Id Name

102 Shyam

103 Geeta

107 Smith

Id Name

102 Shyam

103 Geeta

Id Name

102 Shyam

103 Geeta

Id Name

103 Geeta

102 Shyam

Dr. Chandrajit M MIT FGC, Mysore 19

Instructor

 (student U instructor) U player

student U (instructor U player)

Cartesian Product

 Also known as cross product or cross join

 Binary Operation

 R х S

 no. of tuples in Resultant relation = no. of tuples in R х no. of tuples in S

 It includes one tuple from each combination

 No. of attributes in Resultant relation = n + m

 R(A1, A2,…,An) х S(B1, B2,...,Bn) = Q(A1, A2,…,An, B1, B2,….,Bn)

 Result will have some irrelevant tuple which can be further processed by select & project

operation

Id Name

102 Shyam

104 Smith

105 Nita

Id Name

101 Ram

103 Geeta

104 Rita

105 John

102 Shyam

Id Name

101 Ram

103 Geeta

104 Rita

105 John

102 Shyam

Dr. Chandrajit M MIT FGC, Mysore 20

EMPLOYEE DEPENDANT

Emp_id Name

101 Ram

102 Shyam

103 Geeta

 Employee х dependant

Binary relational Operations

 JOIN

 DIVISION

JOIN Operation

 R S It is used to combine related tuples from two relations into single tuples.

 It allows to process relationships among relations

 R <join condition> S

 Attributes in Resultant relation = n + m

 R(A1, A2,…..,An) S(B1, B2,….,Bn) = Q(A1, A2,…..,An, B1, B2,….,Bn)

 No. of tuples wherever join condition is satisfied.

JOIN Operation and Cartesian product

 In Join, combinations of tuples satisfying joining condition appear in the result.

 Whereas in Cartesian product, all combinations of tuples are included in the result.

 Join operation can be stated as Cartesian product operation followed by Select operation

 A general JOIN condition is of the form

 <condition> AND <condition> AND ….AND <condition>

 Each condition is of the form Ai θ Bi

 Theta join:

 Condition is of the form Ai θ Bi where θ is one of the {=,<,>,≥,≤,≠}

 dom(Ai) = dom(Bi)

 Tuples whose join attributes are null do not appear in the result

 S1 S1.sid < R1.sid R1

Dep_name Bdate

Meena 23-02-1988

Raju 23-02-1990

Emp_id Name Dep_name Bdate

101 Ram Meena 23-02-1988

101 Ram Raju 23-02-1990

102 Shyam Meena 23-02-1990

102 Shyam Raju 23-02-1990

103 Geeta Meena 23-02-1990

103 Geeta Raju 23-02-1990

Dr. Chandrajit M MIT FGC, Mysore 21

 EQUI JOIN

 When comparison Operator used is =, is called an EQUI JOIN

 One or more pairs of attributes that have identical values

EQUI Join operation

EMPLOYEE Employee emp_id=eidDependant

emp_id Name

101 Ram

102 Shyam

103 Geeta

DEPENDANT

Dep_name eid

Meena 101

Raju 102

 In EQUI JOIN one pair of attribute have identical values in each tuple i.e. one attribute is

superfluous, a new JOIN can be applied:

 Natural JOIN i.e. R * S

 Both the tables should have one same attribute as joining attribute with same name

 If attribute is same but name is different (first perform rename than natural join)

emp_id eid Name Dep_name

101 101 Ram Meena

102 102 Shyam Raju

Dr. Chandrajit M MIT FGC, Mysore 22

Join operation: Natural JOIN

EMPLOYEE Employee * Dependant

emp_id Name

101 Ram

102 Shyam

103 Geeta

DEPENDANT

Dep_name eid _id

Meena 101

Raju 102

 If join condition is not satisfied no tuple in resultant relation

 If no. of tuples in R = nR

 If no. of tuples in S = nS

 Tuples in resultant of EQUI JOIN are in between zero and nR * nS

 Join selectivity ratio = expected size of join result / maximum size

Outer Join Operations

 Outer joins are used to keep all the tuples in R, or all those in S, or all those in both relations

in the result of the JOIN, regardless of whether or not they have matching tuples in the other

relation.

 This satisfies the need of queries in which tuples from two tables are to be combined by

matching corresponding rows, but without losing any tuples for lack of matching values.

 The join operations where only matching tuples are kept in the result, are called inner joins.

JOIN

 LEFT OUTER JOIN operation keeps every tuple present in the first (left) relation in the result

of R S.

 If no matching tuple is found in S, then the attributes of S in the join result are filled with null

values.

 emp_id Name Dep_name

 101 Ram Meena

 102 Shyam Raju

3algebra_hyperlink.ppt

Dr. Chandrajit M MIT FGC, Mysore 23

 RIGHT OUTER JOIN keeps every tuple present in the second (right) relation S in the result

of R S.

 FULL OUTER JOIN keeps all tuples present in both the left and the right relations.

 R S

Dr. Chandrajit M MIT FGC, Mysore 24

Division operation

 Division operation is suited to queries that include the phrase “for all”

 Denoted by ÷

 Operation is applied to two relations

 R(Z) ÷ S(X)

 Division operation is applied to two relations

 R(Z) ÷ S(X) where X is subset of Z and attribute Y of R that is not

attribute of S.

Division

 R S

ESSN PNO

12345 1

2345 2

23456 2

23456 1

35346 1

21336 2

R ÷ S

Additional Relational Operations

Generalized Projection

 Generalized projection operation extends the projection operation by allowing functions of

attributes to be included in the projection list.

 ΠF1, F2,….,Fn (R)

Where F1, F2,….,Fn are functions over the attributes in the relation R and may involve

constants.

Generalized Projection (Example)

Relation Given

 EMPLOYEE (Ssn, Salary, Deduction, Years_service)

PNO

1

2

ESSN

12345

23456

Dr. Chandrajit M MIT FGC, Mysore 25

Result Expected

Report (Ssn, Net_salary, Bonus, Tax)

 REPORT ρ(Ssn, Net_salary, Bonus, Tax)

 (ΠSsn, Salary – Deduction, 2000* Years_service, 0.25*Salary (EMPLOYEE)

Aggregate functions and Grouping

 To specify mathematical aggregate functions on collections of values from the database

 Sum, Average, Maximum and Minimum can be applied to collections of numeric values.

 The COUNT function is used to count tuples or values.

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

 Tuples can be grouped in a relation by the value of some of their attributes and then applying

an aggregate function independently to each group.

 An AGGREGATE FUNCTION operation, using the symbol ڻ (pronounced „script F‟), to

specify these types of operations as follows:

 <grouping attributes> F <function list> (R)
 Where <grouping attributes>is a list of attributes of the relation specified in R for which

grouping is required,

 and <function list> is a list of (<function><attributes>) pairs.

 <grouping attributes> ڻ <function list> (R)

 Dno F COUNTSsn (EMPLOYEE)

 Dno F COUNTSsn , AVERAGESalary(EMPLOYEE)

 Dno F COUNTSsn, AVERAGESalary(EMPLOYEE)

 Result:

R(DNO, COUNT_SSN, AVERAGE_SALARY)

 F COUNTSsn, AVERAGESalary (EMPLOYEE)

 Result:

R(COUNT_SSN, AVERAGE_SALARY)

 Retrieve each department number, the number of the employee in the department, their

average salary, while renaming the resulting attributes

 ρR(DNO, NO_OF_EMPS, AVG_SAL)

 (DNO F COUNTSsn,AVERAGESalary(EMPLOYEE))

 Result: R(DNO, NO_OF_EMPS, AVG_SAL)

Dr. Chandrajit M MIT FGC, Mysore 26

Examples of queries

Q1: Retrieve the name and address of all employees

 who work for the 'Research' department.

Solution:

 RESEARCH_DEPT <- σ DNAME='Research' (DEPARTMENT)

 RESEARCH_EMPS <- (RESEARCH_DEPT DNUMBER = DNO EMPLOYEE)

 RESULT <- π fname, lname, address (RESEARCH_EMPS)

Q2: For every project located in ‘Stafford’, list the project number, the controlling

department number, and the department manager’s last name, address and birth

date.

Solution:

STAFFORD_PROJS<- σ PLOCATION=„Stafford„ (PROJECT)

 CONTR_DEPT <- (STAFFORD_PROJS DNUM = DNUMBER DEPARTMENT)

 PRJ_DPT_MGR <- CONTR_DEPT MGRSSN = SSN EMPLOYEE)

 RESULT <- Π PNUMBER,DNUM, LNAME, ADDRESS,BDATE (PRJ_DPT_MGR)

Q3: Find the names of employee who work on all the projects controlled by

department no. 5

Solution:

DEPT5_PROJS(PNO)<-ΠPNUMBER (σ DNUM=5(PROJECT))

 EMP_PROJ(SSN, PNO)<- Π ESSN, PNO(WORKS_ON)

Dr. Chandrajit M MIT FGC, Mysore 27

RESULT_EMP_SSNS<- EMP_PROJ ÷ DEPT5_PROJS

 RESULT <- Π LNAME, FNAME(RESULT_EMP_SSNS * EMPLOYEE)

Q4: Make a list of project numbers for projects that involve an employee whose last

name is ‘Smith’, either as a worker or as a manager of the department that controls

the project.

Solution:

 SMITHS(ESSN) <- ΠSSN(σLNAME=„Smith‟(EMLPOYEE))

 SMITH_WORKER_PROJ <- ΠPNO(WORKS_ON * SMITHS)

 MGRS <- ΠLNAME, DNUMBER(EMPLOYEE SSN=MGRSSN DEPARTMENT)

 SMITH_MANAGED_DEPTS(DNUM) <- ΠDNUMBER

(σ LNAME=„Smith‟(MGRS))

 SMITH_MGR_PROJS(PNO) <-ΠPNUMBER (SMITH_MANAGED_DEPTS * PROJECT)

 RESULT <- (SMITH_WORKER_PROJ U SMITH_MGR_PROJS)

Q5: List the names of all employees with two or more dependents.

 (Strictly speaking, this query cannot be done in the basic relational algebra.

We have to use the AGGREGATE FUNCTION operation with the COUNT

aggregate function. We assume that dependents of the same employee have

distinct DEPENDENT_NAME values.)

Solution:

 T1(SSN, NO_OF_DEPTS) <- ESSN ڻ COUNT DEPENDENT_NAME (DEPENDENT)

 T2<- σNO_OF_DEPTS >=2 (T1)

RESULT <- ΠLNAME, FNAME(T2 * EMPLOYEE

Q6: Retrieve the names of employees who have no dependents.

Solution:

 ALL_EMPS <- ΠSSN(EMPLOYEE)

 EMPS_WITH_DEPS(SSN) <- ΠESSN (DEPENDENT)

 EMP_WITHOUT_DEPS <- (ALL_EMPS - EMPS_WITH_DEPS)

 RESULT<- ΠLNAME, FNAME(EMPS_WITHOUT_DEPS * EMPLOYEE)

Q7: List the names of managers who have at least one dependent.

Solution:

 MGRS (SSN) <- Π MGRSSN (DEPARTMENT)

Dr. Chandrajit M MIT FGC, Mysore 28

 EMPS_WITH_DPS (SSN) <- Π ESSN (DEPENDENT)

 MGRS_WITH_DEPS <- (MGRS ∩ EMPS_WITH_DPS)

 RESULT <- ΠLNAME, FNAME(MGRS_WITH_DEPS * EMPOYEE).

Relational Database Design by ER- to-Relational Mapping

ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types

Step 2: Mapping of Weak Entity Types

Step 3: Mapping of Binary 1:1 Relation Types

Step 4: Mapping of Binary 1:N Relationship Types.

Step 5: Mapping of Binary M:N Relationship Types.

Step 6: Mapping of Multi-valued attributes.

Step 7: Mapping of N-ary Relationship Types.

Step 1: Mapping of Regular Entity Types

 For each regular (strong) entity type (Ei), create a relation that includes all the simple

attributes of that Entity.

 Includes only the simple component attributes of a composite attribute (if any) (as required).

 Choose one of the key attributes of Entity as primary key for Relation.

 If the chosen key of Entity is composite , the set of simple attributes together form the

primary key of Relation.

 If multiple key attributes exist, information about all secondary keys are kept for indexing and

other types of analyses.

 If multiple key attributes exist, information about all secondary keys are kept for indexing and

other types of analyses.

Example:

 Create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema

corresponding to the regular entities in the ER diagram.

 SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE,

DEPARTMENT, and PROJECT.

Step 2: Mapping of Weak Entity Types

 For each weak entity type in the ER schema with owner entity type , create a relation.

 Include all simple attributes (or simple components of the composite attributes) of Weak

entity as attributes of Relation .

 Include the primary key attribute (s) of owner entity as foreign key in Weak entity relation.

 The primary key for weak entity relation is the combination of the primary key (s) of the

owner (s) and the partial key of the weak entity type .

Example:

Dr. Chandrajit M MIT FGC, Mysore 29

 Create the relation DEPENDENT in this step to correspond to the weak entity type

DEPENDENT.

 Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of

DEPENDENT (renamed to ESSN).

 The primary key of the DEPENDENT relation is the combination {ESSN,

DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

Step3 : Mapping of Binary 1:1 Relation Types

 For each binary 1:1 relation type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in the R. There are three possible approaches:

1) the foreign key approach ,

2) the emerged relationship approach , and

3) the cross-reference or relationship relation approach

The foreign key approach

 Mostly used

 Include Primary key of one relation as foreign key in other relation (generally in the relation

which has total participation)

 e.g. MGRSSN as foreign key in DEPARTMENT which is primary key in EMPLOYEE due

to relation of MANAGES

 Because DEPARTMENT entity participation in manages is total.

Dr. Chandrajit M MIT FGC, Mysore 30

The Merged relationship approach

 Merge two entity types and their relationship type in a single relation .

 Suitable only when total participation of both the entity exists.

 But not widely used

The cross-reference or relationship relation approach

 Create a new relation for relationship type.

 Include Primary keys of both the relations as foreign key in new relation.

 Both primary key together works as composite primary key for new relation.

 Used when both entity participation is partial (to avoid more nulls)

Step 4: Mapping of binary 1:N Relationship types

 For each regular binary 1:N relationship type R, identify the relation S that represents the

participating entity type at the N-side of the relationship type.

 Include the primary key of the relation T that represents the other entity type participating in

R as foreign key in S.

 This is done because each entity instance on the N-side is related to at most one entity

instance on the 1-side of the relationship type.

 Include any simple attributes (or simple components of the composite attributes) of the 1:N

relationship type as attribute of S.

Example:

 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure.

 For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation

as foreign key in the EMPLOYEE relation and call it DNO.

Dr. Chandrajit M MIT FGC, Mysore 31

Step 5: Mapping of binary M:N Relationship Types

 For each binary M:N relationship type R, create a new relation S to represent R.

 Include the primary keys of the relations that represent the participating entity types as

foreign key attributes in S

 Their combination will form the primary key of S.

 Also include any simple attributes of the M:N relationship type (or simple components of

composite attributes) as attributes of S.

 We cannot represent an M:N relationship type by a single foreign key attribute in one of the

participating relations (as we did for 1:1 or 1:N relationship types) because of the M:N

cardinality ratio; we must create a separate relation S.

Example:

 The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a

relation WORKS_ON in the relational database schema. The primary keys of the PROJECT

and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO

and ESSN, respectively.

 Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The

primary key of the WORKS_ON relation is the combination of the foreign key attributes

{ESSN, PNO}.

Dr. Chandrajit M MIT FGC, Mysore 32

Step 6: Mapping of the multivalued Attributes

 For each multivalued attribute A, create a new relation R.

 This relation R will include an attribute corresponding to A, plus the primary key attribute K

of main relation as a foreign key in new relation

 The primary key of R is the combination of A and K .

 If the multivalued attribute is composite, we include its simple components

Example:

 The relation DEPT_LOCATIONS is created. The attribute DLOCATION represents the

multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-

represents the primary key of the DEPARTMENT relation. The primary key of R is the

combination of {DNUMBER, DLOCATION}.

Step 7: Mapping of N-ary relationship Types

 For each n-ary relationship type , where n>2 , create a new relation S to represent

Relationship type.

 Include the primary keys of the relations that represent the participating entity types as

foreign key attributes in S .

 Also include any simple attributes of the n-ary relationship type (or simple components of

composite attributes) as attributes for S .

 The primary key of S is usually a combination of all the foreign keys that references the

relations representing the participating entity types .

 Step 7: Mapping of N-ary relationship Types

Example:

 The relationship type SUPPY in the ER below. This can be mapped to the relation SUPPLY

shown in the relational schema, whose primary key is the combination of the three foreign

keys {SNAME, PARTNO, PROJNAME}

Dr. Chandrajit M MIT FGC, Mysore 33

