
Dr. Chandrajit M

 MIT FGC Mysore 1

Overview of Transaction Management

Unit 2 and 4

 Topics:

 Transaction- Transaction Concepts, States, ACID properties, Concurrent executions,

Serializability, Transaction Processing, Transaction and System Concepts, Properties of

Transactions Locking Techniques for Concurrency Control, Time-stamp based schedules,

Database Recovery Techniques

Overview

 Transaction processing systems are systems with large databases and hundreds of concurrent

users that are executing database transactions

 Examples:

 Reservation systems

 Banking systems

 They require high availability and fast response time for hundreds of concurrent users.

 A transaction is an execution of a user program, seen by the DBMS as a series or list, of actions

i.e. read and write operations.

 For performance reasons, a DBMS has to interleave (mix) the instructions of several transactions.

 The interleaving is done carefully to ensure that the result of a concurrent execution of

transactions should be equivalent (in its effect upon the database) to some serial, or one-at-a-time,

execution of the same set of transactions.

 Transactions submitted by the various users may execute concurrently and may access and update

the same database items.

 If this concurrent execution is uncontrolled, it may lead to problem, such as inconsistent database.

 DBMS handles concurrent executions and it is an important aspect of transaction management

and is the subject of concurrency control.

 DBMS handles partial transactions, or transactions that are interrupted before they run to normal

completion.

 The DBMS ensures that the changes made by such partial transactions are not seen by other

transactions and it is the subject of crash recovery.

 Thus, two main issues to deal with:

 Failures of various kinds, such as hardware failures and system crashes: Crash Recovery

 Concurrent execution of multiple transactions: concurrency control

The ACID Properties

 There are four important properties of transactions that a DBMS must ensure to maintain data in

case of concurrent access and system failures and these properties are known as ACID properties:

 Atomicity

 Consistency

 Isolation

 Durability

Dr. Chandrajit M

 MIT FGC Mysore 2

Atomicity

 Either all operations in transactions are carried out or none.

 The system should ensure that updates of a partially executed transaction are not reflected in the

database

 Transactions can be incomplete for three kinds of reasons:

 A transaction can be aborted, or terminated unsuccessfully by DBMS

 The system may crash

 A transaction may encounter an unexpected situation and decide to abort

 Thus a DBMS must find a way to remove the effects of partial transactions from the database,

that is, it must ensure transaction atomicity: either all of a transaction's actions are carried out, or

none are.

Consistency

 After the successful execution of transaction the database should be in consistent state.

 Erroneous transaction logic can lead to inconsistency

Consistency (Example)

 Transaction to transfer Rs. 50 from account A to account B: Assume A=100, B=200

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Consistency requirement:

 The sum of A and B is unchanged by the execution of the transaction.

Isolation

 A transaction should appear as though it is being executed in isolation from other transactions i.e.

the execution of a transaction should not be interfered by any other transactions executing

concurrently. This property is referred to as isolation: Transactions are isolated, or protected,

from the effects of concurrently scheduling other transactions.

 For example, if two transactions T1 and T2 are executed concurrently, the net effect is guaranteed

to be equivalent to executing (all) T1 followed by executing T2 or executing T2 followed by

executing T1.

Durability

 After a transaction completes successfully, the changes it has made to the database persist, even if

there are system failures.

Dr. Chandrajit M

 MIT FGC Mysore 3

 DBMS maintains a record, called the log, of all writes to the database.

 The log is used to ensure durability: If the system crashes before the changes made by a

completed transaction are written to disk, the log is used to remember and restore these changes

when the system restarts.

Transaction States

A transaction may be in any of the following state during its lifetime.

 Active: The initial state when the transaction has just started execution.

 Partially Committed: When the transaction is executing its final instruction.

 Committed: If no failure occurs then the transaction reaches the COMMIT POINT.

All the temporary values are written to the stable storage and the transaction is said

to have been committed.

 Failed: If the transaction fails for some reason. The temporary values are no longer

required, and the transaction is set to ROLLBACK. It means that any change made

to the database by this transaction up to the point of the failure must be undone. If

the failed transaction has withdrawn Rs. 100/- from account A, then the

ROLLBACK operation should add Rs 100/- to account A.

 Aborted: after the transaction has been rolled back and the database restored to its

state prior to the start of the transaction. Two options after it has been aborted:

o restart the transaction can be done only if no internal logical error

o kill the transaction.

Transactions and Schedules

 A transaction is seen by the DBMS as a series, or list, of actions.

Dr. Chandrajit M

 MIT FGC Mysore 4

 The actions that can be executed by a transaction include reads and writes of database objects.

Two important assumptions can be made:

 Transactions interact with each other only via database read and write operations, and they are not

allowed to exchange messages.

 The action of a transaction T reading an object O is denoted as RT (O); and writing as WT (O).

 In addition to reading and writing, each transaction must specify as its final action either commit

(i.e., complete successfully) or abort (i.e., terminate and undo all the actions carried out so far).

 AbortT denotes the action of T aborting, and CommitT denotes T committing.

 A schedule is a list of actions (reading, writing, aborting, or committing) from a set of

transactions. It is description of order of execution of operations of transactions.

 There are two types of schedules:

1. Serial schedule 2. Non-Serial schedule

 If the actions of different transactions are not interleaved i.e. order of execution of transactions is

sequential.

 Basic Assumption is each transaction preserves database consistency.

 Thus serial execution of a set of transactions preserves database consistency.

Non-Serial Schedule:

Operations are interleaved from multiple transactions.

Ex:

Dr. Chandrajit M

 MIT FGC Mysore 5

Concurrent Execution of Transactions

 The DBMS interleaves the actions of different transactions to improve performance, in terms of

increased throughput or improved response times for short transactions, but not all interleaving

should be allowed.

 Ensuring transaction isolation while permitting such concurrent execution is difficult, but is

necessary for performance reasons.

 While one transaction is waiting for a page to be read in from disk, the CPU can process another

transaction.

 Because I/O activity can be done in parallel with CPU activity in a computer.

 Overlapping I/O and CPU activity reduces the amount of time disks and processors are idle, and

increases system throughput (the average number of transactions completed in a given time).

 Interleaved execution of a short transaction with a long transaction usually allows the short

transaction to complete quickly.

 In serial execution, a short transaction could get stuck behind a long transaction leading to

unpredictable delays in response time, or average time taken to complete a transaction.

Serializability

 A serializable schedule over a set S of committed transactions is a schedule whose effect on any

consistent database instance is guaranteed to be identical to that of some complete serial schedule

over S.

 or

 The database instance that results from executing the given schedule is identical to the database

instance that results from executing the transactions in some serial order.

 Thus a (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule.

Dr. Chandrajit M

 MIT FGC Mysore 6

 Even though the actions of T1 and T2 are interleaved, the result of this schedule is equivalent to

running T1 and running T2.

 T1’s read and write of B is not influenced by T2’s actions on A, and the net effect is the same if

these actions are ‘swapped’ to obtain the serial schedule T1:T2.

Serializability (Example)

This schedule is not a serial schedule, but it is equivalent to Schedule T1;T2.

Serializability (Example)

This concurrent schedule does not preserve the value of (A + B).

Types of Serializibility:

1. Conflict Serilizibility

Dr. Chandrajit M

 MIT FGC Mysore 7

2. View Serilizibility

Concurrency Control:

Why Concurrency Control is required?

• To Guarantee Serializability in concurrent transactions

• To ensure isolation property of concurrent transactions

Techniques are classified as:

• Lock Based: locking data items and thus preventing concurrent transaction from

accessing.

• Time Stamp Based: Execute transaction based on time based ordering.

Locks

• Lock is a variable to control access to a data item

• A transaction must get a lock before operating on the data

• Two types of locks:

• Shared (S) locks (also called read locks)

– Obtained if we want to only read an item

– Other transaction are allowed to read item

• Exclusive (X) locks (also called write locks)

– Obtained for updating a data item

– Single transaction exclusively holds the item

Lock Instructions:

• Lock_item(X) has three states

– read_lock(X)- Shared Lock

– Write_lock(X) –Exclusive Lock

– UnLock(X)

Read_item(X)- read the value of item

Write_item(X)- update the value of item

Note: Transaction must have issued read_lock(X)/write_lock(X) before using the item for

read or write and Unlock(X) after all read/write operations

Two Phase Locking Protocol

• Defines rules to lock and unlock data items while operating the data item

• Ensures serializibility

• Contains 2 Phases

1. Growing Phase

• transaction may obtain locks

• transaction may not release locks

• When all the possible locks have been acquired Transaction

reaches LOCK POINT

2. Shrinking Phase

Dr. Chandrajit M

 MIT FGC Mysore 8

• transaction may release locks after LOCK POINT

• transaction may not obtain locks

Upgrading of lock(Read to Write) is not possible in Shrinking Phase but possible in

Growing Phase

Drawback of Locking Protocols
• 2PL May lead to Deadlock

– deadlock is a condition where two or more transactions are
waiting indefinitely for one another to give up locks

Time Stamp Ordering Protocol

• The Timestamp Ordering Protocol is used to order the
transactions based on their Timestamps. The order of transaction
is nothing but the ascending order of the transaction creation.

• The priority of the older transaction is higher that's why it
executes first. To determine the timestamp of the transaction,
this protocol uses system time or logical counter.

• Let's assume there are two transactions T1 and T2. Suppose the
transaction T1 has entered the system at 007 time and

Dr. Chandrajit M

 MIT FGC Mysore 9

transaction T2 has entered the system at 009 times. T1 has the
higher priority, so it executes first as it is entered the system first.

No Deadlock in this protocol

Read and Write Time Stamp

Data item will be having two variables to keep track of the time of access and write.

• Max-rts(x): max time stamp of a transaction that read x .

• Max-wts(x): max time stamp of a transaction that wrote x.

Protocol for Read Operation

Check the following condition whenever a transaction Ti issues a Read (X) operation

• Read (x)

If ts(Ti) < max-wts(x) then

 Abort Ti

 Else

 • Perform Read (x)

 • Max-rts(x) = ts(Ti)

Note: consider R->W conflict

Protocol for Write Operation

Check the following condition whenever a transaction Ti issues a Write(X) operation

• Write(x)

If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then

 Abort Ti

Else

 Perform Write (x)

 Max-wts(x) = ts(Ti)

Note: consider W->W&R conflict

Dead Locks in Concurrent Transaction:

• Suppose transaction T1 is updating the value X. At the same time transaction T2

is tries to read X by locking it. In addition T1 will try to lock Y which is held by

lock of T2. It can be represented more clearly like below :

Dr. Chandrajit M

 MIT FGC Mysore 10

Here T2 is waiting for T1 to release lock on X, while T1 is waiting for T2 to release lock on

Y.

Classification of failure

1) Transaction Failure: A Transaction can fail to execute further due to either

– Logical errors: Transaction fails due to logical errors in the code.

– System errors: Transaction fails due to the errors Computer System.

2) System Crash: System crash occurs when there is a hardware or software failure or

external factors like a power failure.

3) Disk Failure: Disk Failure occurs when there are issues with hard disks like formation

of bad sectors, disk head crash, unavailability of disk etc.

Database Recovery Techniques

Database systems, like any other computer system, are subject to failures but the data

stored in it must be available as and when required. When a database fails it must possess

the facilities for fast recovery. It must also have atomicity i.e. either transactions are

completed successfully and committed (the effect is recorded permanently in the

database) or the transaction should have no effect on the database.

There are both automatic and non-automatic ways for both, backing up of data and

recovery from any failure situations. The techniques used to recover the lost data due to

system crash, transaction errors, viruses, catastrophic failure, incorrect commands

execution etc. are database recovery techniques. So to prevent data loss recovery

techniques based on deferred update and immediate update or backing up data can be

used.

Dr. Chandrajit M

 MIT FGC Mysore 11

Some of the backup techniques are as follows :

 Full database backup – In this full database including data and database, Meta information

needed to restore the whole database, including full-text catalogs are backed up in a

predefined time series.

 Differential backup – It stores only the data changes that have occurred since last full

database backup. When same data has changed many times since last full database backup,

a differential backup stores the most recent version of changed data. For this first, we need

to restore a full database backup.

 Transaction log backup – In this, all events that have occurred in the database, like a

record of every single statement executed is backed up. It is the backup of transaction log

entries and contains all transaction that had happened to the database. Through this, the

database can be recovered to a specific point in time. It is even possible to perform a backup

from a transaction log if the data files are destroyed and not even a single committed

transaction is lost.

